# INDIAN SCHOOL AL WADI AL KABIR

#### **REVISION PAPER 2024-25**

**SUB:** Mathematics (041)

Date: Time Allowed :3 hours

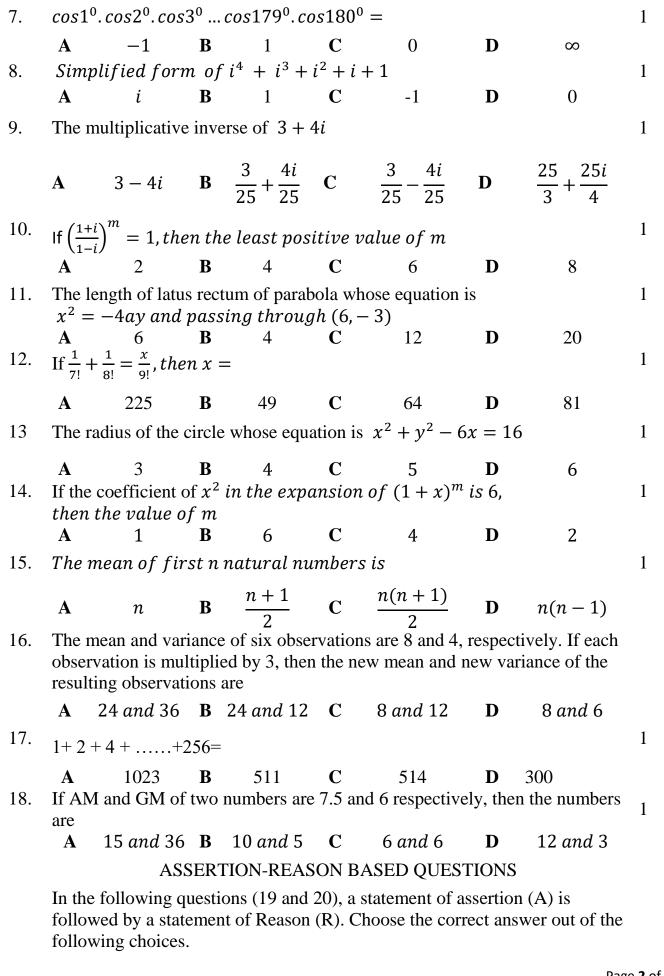
Class: XI Maximum Marks: 80

#### **General Instructions:**

 $\mathbf{C}$ 

N and Z

- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.


O and O'

Q.No SECTION A (MCQ) Mark

- 1. Which of the following are disjoint sets?
  - re disjoint sets?
  - A N and W B Z and W
- 2. If X and Y are two sets such that  $X \cup Y$  has 50 elements, X has 28 elements and Y has 32 elements, how many elements does  $X \cap Y$  have?

D

- **A** 12 **B** 22 **C** 10 **D** 110
- 3. The mean deviation about the median for data: 6, 7, 10, 13, 14, 3, 8.
  - **A** 2.75 **B** 3 **C** 0 **D** 1
- 4. If  $\left(\frac{2x+1}{3}, 2x+y\right) = (1,4)$ , then values of x and y
  - **A** x = 1, y=2 **B** x = 0, y=0 **C** x = 2, y=2 **D** x = 1, y=1
- 5. The solution of inequality  $\frac{x}{2} + \frac{x}{3} + \frac{x}{4} \le 13$ 
  - **A**  $x \in [12, 13]$  **B**  $x \in [12, \infty)$  **C**  $x \in (-\infty, 12]$  **D**  $x \in (-\infty, 13]$
- 6. Evaluate:  $cos\left(\frac{15\pi}{4}\right)$ 
  - **A**  $\frac{1}{\sqrt{2}}$  **B**  $\frac{\sqrt{3}}{2}$  **C**  $-\frac{1}{\sqrt{2}}$  **D**  $-\frac{\sqrt{3}}{2}$



- A) Both A and R are true and R is the correct explanation of A.
- B) Both A and R are true but R is not the correct explanation of A.
- C) A is true but R is false.
- D) A is false but R is true.
- 19. (A) The 5<sup>th</sup>, 8<sup>th</sup>, and 11<sup>th</sup> terms of a GP are p, q and s respectively then p, q and s are consecutive terms of another GP.
  - (R) If p, q and s are in GP, then  $q^2 = ps$ .
- 20. (A) If A is the set of even natural numbers less than 8 and B is the set of odd 1 natural numbers less than 5, then the number of relations from A to B is 64.(R) If a set A has m elements and set B has n elements then the number of relations from A to B is mn.

## **SECTION B**

- 21. Write the relation  $R = \{(x, y): 2x + y = 8, x \text{ and } y \text{ are whole numbers} \}$  in 2 roster form.
- 22. If (x-3i)(3+i) is equal to the conjugate of 9+7i, find the real value of x.
- 23. Find r if  $5_{P_r} = 2.6_{P_{r-1}}$

# OR

Find the number of sides of a convex polygon if it has 35 diagonals.

24. How many terms of the GP 3, 6, 12, ... to be added to get a sum 765?

If a, b and c are in GP and  $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$ , then prove that x, y and z are in AP.

25 If  $(1+i)^3 = x + iy$ , then find  $x^2 + y^2$ .

# SECTION C

- 26. Evaluate:  $tan\frac{\pi}{8}$  **OR**If  $tanA = \frac{4}{3}$ ,  $A \in III$  quadrant, then evaluate  $cos\frac{A}{3}$ .
- 27. Solve the following linear inequalities and represent the solution on a number line:  $5(2x-7)-3(2x+3) \le 0$ ;  $2x+19 \le 6x+47$ .
- 28. How many words can be formed with or without meaning using all letters of 3 the word 'INDIA'? If all these words are arranged in the dictionary order, what will be the rank of the word 'NADII'

OR

2

If sum of two positive numbers is equal to 6 times their geometric mean, then prove that the numbers are in the ratio  $3 + 2\sqrt{2} : 3 - 2\sqrt{2}$ 

29. Find mean deviation about mean:

X f 5

| 20 | 25 |
|----|----|
| 2  | _  |

3

3

30.

15

6

Expand and simplify:  $(\sqrt{2} + \sqrt{3})^4 + (\sqrt{2} - \sqrt{3})^4$ 

10

4

31. If  $A = \{x: x \text{ is a prime number less than } 8\}, B = \{y: y^2 \le 17, y \in N\}$  then write the following in roster form. a)  $A \cup B$  b)  $A \cap B$ 

### SECTION D

- 32. Find the total number of words which can be formed using all letters of the word 5 `ELEMENTS'. How many of these words:
  - a) Start with E and end with E.
  - b) All vowels not together.

33. Prove: 
$$(1 + \cos\frac{\pi}{8})(1 + \cos\frac{3\pi}{8})\left(1 + \cos\frac{5\pi}{8}\right)\left(1 + \cos\frac{7\pi}{8}\right) = \frac{1}{8}$$

OR

Prove: 
$$\frac{\sin 5x - 2\sin 3x + \sin x}{\cos 5x - \cos x} = \tan x$$

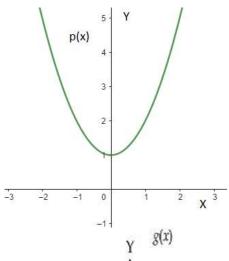
34. Find mean, variance and standard deviation for the following frequency 5 distribution:

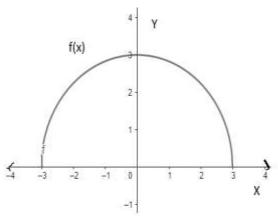
| Class | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
|-------|-------|-------|-------|-------|-------|-------|--------|
| f     | 3     | 7     | 12    | 15    | 8     | 3     | 2      |

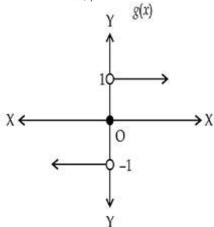
35. The coefficients of three consecutive terms of the expansion  $(1 + x)^n$  are in the ratio 1: 3: 5. Find n.

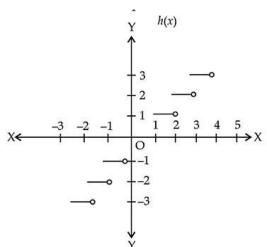
OR

Expand and simplify  $(1+x)^5 + (1-x)^5$ .


Hence evaluate  $(1 + \sqrt{2})^5 + (1 - \sqrt{2})^5$ 


5


# **SECTION D** Case study-based Questions


36. There are four graphs p(x), f(x), g(x) and h(x) given below Based on the graph, answer the following questions:

4









- a) If  $p(x) = x^2 + 1$ , evaluate of p(-1) + p(1).
- b) If  $f(x) = \sqrt{9 x^2}$  write domain and range of f(x).
- c) Write domain and range of g(x).

# OR

Evaluate h(1.5) + h(-1.5) + h(2) where h(x) = [x].

37. Hari appears in an examination. While reading the instructions he observed that the question paper consists of 12 questions divided into two parts I and II, containing 5 questions and 7 questions respectively. Based on the information given answer the following:



- a) If Hari is required to attempt 8 questions in all by selecting exactly 4 questions from section I, then in how many ways can he select the questions?
- b) If Hari is required to attempt 10 questions in all by selecting equal number of questions from each section, then in how many ways can he select the questions?
- c) If Hari is required to attempt 8 questions in all by selecting at least 4 questions from section I, then in how many ways can he select the questions? OR

  If Hari is required to attempt 8 questions in all by selecting at most 3

If Hari is required to attempt 8 questions in all by selecting at most 3 questions from section I, then in how many ways can he select the questions?

- 38. A and B are trying to answer the questions related on Sequences and Series. 4 Consider the following sequences:
  - a)  $(2 \times 3), (3 \times 4), (4 \times 5), ...$
  - b) Fouth, fifth and sixth terms of a sequence are 40, 80 and 160. Based on the above information answer the flollowing:
    - i) Write 20th term of the sequence given in (a)
    - ii) Find the sum of first 10 terms of the sequence given in (b)

\*\*\*\*\*\*\*

### **ANSWER KEY**

| Q1  | D             | Q2         | С            | (          | Q3                                            |   | В        | Q4  | A                            |                            | Q5                | С              |
|-----|---------------|------------|--------------|------------|-----------------------------------------------|---|----------|-----|------------------------------|----------------------------|-------------------|----------------|
| Q6  | A             | Q7         | C            | (          | Q8                                            |   | B Q9     |     | С                            |                            | Q10               | В              |
| Q11 | C             | Q12        | D            | Ç          | Q13                                           |   | ( )      | Q14 | С                            |                            | Q15               | В              |
| Q16 | A             | Q17        | В            | Ç          | Q18                                           |   | )        | Q19 | A                            |                            | Q20               | C              |
| Q21 | {(0,8),       | (1, 6), (2 | (2,4),       | <b>Q22</b> | x=2                                           |   | Q23      | r=3 | OR                           |                            | Q24               | n=8            |
|     | (3,           | (2),(4,0)  |              | No of      |                                               |   | sides=10 |     |                              |                            |                   |                |
| Q25 | 8             |            | Q26          |            | $\sqrt{2} - 1 \text{ OR } \frac{2}{\sqrt{5}}$ |   |          | Q27 | $Q27 	 7 \le x \le 11$       |                            | ≤ 11              |                |
| Q28 | 120 an        | d 49       | Q29          |            | 6.32                                          | , |          | Q30 | 98                           |                            |                   |                |
| Q31 | $\{1, 2, 3\}$ | 3, 4, 7}&  | $\{2, 3, \}$ |            | Q32 6720                                      |   | Q34      | 62  |                              |                            |                   |                |
|     |               |            |              |            |                                               |   |          | 720 |                              | 201                        |                   |                |
|     |               |            |              |            |                                               | ( | 6000     |     | 14.18                        |                            | 3                 |                |
| Q35 | 82            |            | Q36          |            | i)                                            | 4 |          |     | Q38                          | $a)5_{C_4} \times 7_{C_4}$ |                   |                |
|     |               |            |              |            | ii) [-3, 3]                                   |   |          |     | b) $5_{C_5} \times 7_{C_5}$  |                            |                   |                |
|     |               |            |              |            | iii) $R \to \{-1, 0, 1\}$                     |   |          |     | c) $5_{C_4} \times 7_{C_4}$  |                            |                   |                |
|     |               |            |              | OF         | OR 1                                          |   |          |     | $+5_{C_5} \times 7_{C_3}$ OR |                            |                   |                |
|     |               |            |              |            |                                               |   |          |     | $5_{C_3} \times 7_{C_5}$     |                            |                   |                |
|     |               |            |              |            |                                               |   |          |     | $+5_{C_2} \times 7_{C_6}$    |                            |                   |                |
|     |               |            |              |            |                                               |   |          |     |                              |                            | $+5_{C_1} \times$ | $\gamma_{C_7}$ |
|     |               |            |              |            |                                               |   |          |     |                              |                            |                   |                |

Page 6 of 6